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This is one of three interim reports completed by a UC Berkeley team of students and faculty in the
Energy and Resources Group. The overall objective of the project is to determine the impact and
value of coupling distributed storage with photovoltaic systems. Our specific focus is on understand
distribution system impacts and the opportunity for creating value by incorporating storage into the
CAISOQO's dispatch process.

The tasks of the project are

e 4.2 PV Variability Analysis
e 4.3 - CPP Tariff

e 4.4 - Aggregate control

e 4.5 - CAISO Product

This particular interim report documents our efforts to study the impact of distributed PV portfolios
on grid operations and planning. The impacts of distributed PV will be assessed both for existing
SolarCity installations then predicted for an increased build out of distributed PV. Thus far, a method
for assessing the existing impact, and possible methods for predicting additional impacts have been
established using data from 16 SolarCity installations in the Los Angeles area taken at roughly one
minute intervals collected for one week. The final results of this study will use one minute interval data
from 100 installations, collected for one year, in the vicinity of San Jose and the Fresno. The method
for assessing existing impact quantifies variability impacts on short term system balancing, distribution
voltage control, and the likelihood of backwards flow on a feeder. Predictive methods for increased
distributed PV will use a relationship of correlation and distance and a predicted distribution of the
aggregate generation signal.

1 Background

The power systems literature has addressed the integration of intermittent renewable energy since the
1970’'s. Early papers were concerned with reliability problems that would result form rapid fluctuations
in large solar and wind installations, akin to transmission losses or unscheduled plant outages. However
the effect of geographic diversity (even within the same wind farm) was shown to dramatically reduce
the magnitude of fluctuations from large installations. For a comprehensive review of early renewable
integration studies, see Mills and Wiser 2010 [1].



1.1 System-wide integration studies

Most recent integration studies have focused on the operational impacts of intermittent generation.
Specifically, the work assesses the impact on system balancing authorities, which will need to secure
fast responding dispatchable resources in order to respond to significant fluctuations resulting from
additional intermittent resources. A major contribution of these studies is the distinction between
variability and uncertainty. Uncertainty refers to disparities between predicted and actual output from
renewable generators while variability revers to rapid fluctuations in output that require flexibility even
if they are accurately predicted.

The Western Wind Integration Study and its California specific predecessor, the Intermittency Analysis
Project, both predict the impact of increasing renewable electricity on the power grid [2, 3]. These
studies assess the distribution of hourly changes in overall net load at varying timescales and different
amounts of installed wind and solar generation. Hourly ramps are separated by hour of day and by
season to outline systematic ramps that are correlated due to use patterns or daily weather patterns.
Annual hourly deltas of more than 3 standard deviations from the mean are counted as a measure of
extreme events. A similar analysis is completed for 10 min deltas. In the California study, the impact of
sub-hourly variability is measured using a 15 minute moving average which represents total dispatched
generation beyond which automated generation control (AGC) is needed to adjust total generation to
real time load. Changes over 5 minutes in this moving average are used as a likely ramping requirement
for generation on the 5 minute market. Deviations between the 15 minute moving average and real-time
load are used to simulate the needs of AGC on a minute-to-minute basis. Figure 1 is reproduced from
Bai et al. to show how metrics are drawn from the 15 minute moving average [3]. In the Western
wind integration study, the impact of sub-hourly variability is assessed using short time-scale dispatch
simulations and minute-by-minute wind data obtained from NREL.
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Figure 1: Figure depicting the calculation of 1 min and 5 min deltas in the California Intermittency Analysis
Project. 1 min deltas represent those used for AGC, 5 min deltas represent a 5min market.

More recent work in California has attempted to isolate the operational requirements that result from
variability and uncertainty in renewable generation [4, 5, 6]. Makarov 2009 outlines the basic method
for this analysis. First, the net load (ignoring transmission and distribution constraints) is projected for
each minute over the course of a year by subtracting projected wind generation from projected load.
Load is determined by applying an annual growth rate to the 2006 aggregate load profile. Predicted
wind generation was developed by AWS truewind. The impact of variability and uncertainty on power
capacity needs in the 5 minute ahead real time market and regulation capacity markets are calculated by
subtracting the total dispatched generation from the net load. Total dispatched generation is calculated



as described in Equations 1 and 2 where D represents the total dispatched generation at either the hour
ahead, ha, point or the 5min market, 5min; avgr(L) refers to the interval average of net load, L — W,
at intervals of T; Rz, is an operator which adds ramps of length T; between hourly averages; and €
represents forecast error.

Dpa = Roomin{avgsomin(L — W) + €L ha — €Wha} (1)
Dsmin = §RSmin{ang)min(L - W) + €L 5min — EI/V,ha} (2)

The required signal for the real time market is the difference between the hour ahead schedule and the real
time market schedule, St = Dho — Dsmin. The required signal to be followed by AGC is the difference
between the net load and the generation dispatched in the real time market, Sogc = L — W — D5
The maximum and minimum of S,y and Sy4. are presented for each hour of the day in each season.
Stratifying by hour of day and season controls for systematic effects due to diurnal or seasonal patterns.
Figure 3, explained in the method section, provides a graphical representation of Makarov's method.

Makarov 2009 also isolated the likely ramps of extreme change and duration in order to identify require-
ments for generators participating in the real time market or AGC. In the swinging window algorithm
a ramp in the net load signal is considered to continue between two subsequent readings if every mea-
surement between the minutes is within some error € of a linear interpolation between the readings at
each minute. This method is explained in detail in Section 3.2.

The California integration work builds on previous work by done by Kirby Consulting for the Oak Ridge
National Laboratory that assessed customer contribution to ancillary service requirements for AGC and
the real time market [7]. This report uses a the deviation of customer load from a moving average to
estimate total ancillary service (AS) requirements if only that customer’s load was being followed. The
system then uses the correlation between each customer’s AS signal to determine to what extent each
customer contributed to the total AS signal, where more correlated loads contribute a larger percent of
their overall signal. When assessing the regulation contribution of one signal among a group of signals,
the signal must be considered in isolation against the aggregation of all other signals.

1.2 Geographic diversity

The effect of geographic diversity has been well documented in literature, though many definitions of
variability are used: unfiltered PV generation signals are used in many papers including [8, 9]; the
maximum fluctuation during a moving window is used in Murata 2009 [10], differenced signals are used
in Mills and Wiser 2010 [1]; an autoregressive moving average model is used in Choudhury and Rahman
[11]; and frequency domain periodic analyses are used in other sources [12, 13, 14]. Regardless of
the metric used, many studies find a relationship between the correlation of variability between sites,
the distance between sites, and the timescale of the variability measured, shown in Figure 2 where the
shorter distance between sites and longer timescales of variability lead to greater correlation of variability
between sites. [1].

1.3 Impacts of variability on small geographic areas

Aggregate variability of renewable generation will have a much different impact on smaller geographic
areas then on larger ones due to the decreasing effect of geographic diversity, i.e., solar generation
located within a radius of a few kilometers will be much more correlated than solar generation located
over the whole of California. Kirby and Milligan show that balancing authorities with smaller footprints
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Figure 2: Correlation of variability between pairs of sites as related to the distance between sites and the
timescale of variability. Reproduced from Mills and Wiser 2010

will likely have more difficulty managing renewable variability [15]. Small area geographic diversity will
also affect the impact of distributed PV on the distribution system.

Studies on the impact of PV in the distribution system have been limited, though there is significant
worry that rapid fluctuations in consumer load (resulting from solar PV) will lead to insignificant voltage
control, increased short circuits, and destabilization of protection measures. Liu and Bebic perform
steady state voltage analysis on a radial distribution circuit and finds that all voltage issues can be
managed through additional installed voltage support as well as possibly with support from PV inverters
[16]. Teleke et al., perform a dynamic analysis of a distribution circuit under an extremely rapid and
large fluctuation in load: approximately a 250kW to a IMW change over 1 second. The study finds that
voltage fluctuations are manageable in a the modeled circuit (that contains secondary circuits) however
multiple changes are required of tap changing transformers over a time period of 1-2 seconds.

2 Method

In this section we will describe methods for (1) measuring the impact of a variable generation signal,
and (2) predicting the properties of aggregated PV generation signals under higher levels of penetration.

Variability metrics are intended to be proxies for the impact that an additional variable signal will have
on grid operations and planning. This paper outlines metrics related to the impacts of short time scale
variability (1 to 30 minutes in duration) in 4 distinct areas:

1. The capacity requirements for regulation (i.e. automatic generation control or AGC) and real time
markets (load-following).

2. The ramping requirements for power generators participating in AGC or load-following.

3. The potential for out-of-bounds voltage swings due large load fluctuations and insufficient voltage
support.



2.1 Capacity requirements for system balancing

The impact of an additional signal on the existing capacity requirements is evaluated using a combination
of the method described in Makarov et al (2009) for evaluating requirements and the method in Kirby
(2000) for relating the AS requirements of independent signals to the AS requirements of an aggregate
signal [5, 7].

Makarov et al’s analysis is performed on the generation signal from each individual PV site, a shown
in Figure 3. In Figure 3, Part A displays the cumulative dispatched generation after the hour ahead
schedule (red line), the 5 min ahead schedule (black line), and the AGC response (blue dots). The
hour ahead schedule and the 5min ahead schedule are calculated as described in Equations 1 and 2
respectively, where forecast errors are set to 0 in order to isolate variability without forecast uncertainty.
The cumulative generation following the AGC signal is equal to the PV generation signal exactly. Parts
B and C of Figure 3 display the resulting signal required of generation in the load-following market and
generation participating in AGC respectively.

4000 T T
< Load Following
:
= 3000~ Hour Ahead
£ :
5% 2000l Real Time
o (9]
c
& 1000 N
0 | | | | |
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00
2000 T T T T T T T T
£ 1000{- : g
L g
-5 ol MJW/\A/WQ‘W\, -
n
~-1000 1 1 1 1 1 1 1 1
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00
g 1000
82
<5 Or b
B
1 1

1 1 1 1 1 1
04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00
Time of Day on Jul 12th 2011

Figure 3: Makarov Example, method for calculating the AGC and the Load-following signal.

The maximum, minimum and the standard deviation of the load-following and AGC signal at each hour
will be used to evaluate the system balancing requirements of the aggregate signal on the gird. This will
be sufficient for measuring how the marginal system balancing requirements change as more distributed
PV is added to an area, however the actual requirements have to be related to total system load before
it can be used to calculate the costs of balancing additional PV.

2.2 Ramping requirements for system balancing and the probability of voltage fluc-
tuations

The swinging window algorithm from Makarov et al (2009) is used to assess the sustained ramp in a
signal at durations intervals of 1 minutes to 12 minutes. Figure 4, reproduced from Makarov 2009,
graphically displays the algorithm. The average rate of generation change between the points 1,3; 1,4;
and 2,4 are all valid, sustained, ramps; because each point between the two bounding points falls within



a margin of error of a linear interpolation (know as the swinging window). However, the interpolation
between point 1 and 5 is not a sustained ramp, because point 4 lies outside of the window [5].

Sustained ramps in the regulation and the load-following are measured to test the physical requirements
of generators participating in Ancillary Service programs, where the sum of the ramping ability of each
available generator should match the likely ramping requirements of the ancillary service signal.

Sustained ramps in the overall signal are measured to test the likelihood of a voltage fluctuation on
a feeder, where large isolated ramps on circuits and sub-circuits can require additional equipment (or
more rapid equipment) for reactive power compensation and voltage control.
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Fig. 7. Concept of the “swinging window™ algorithm.

Figure 4: Swinging window algorithm (see [5] for full details)

2.3 Predictive Methods
Two methods are identified for predicting the impacts of increased penetration of distributed generation:

1. Use a relationship between the effective number of sites, n.;¢, and the normalized impact in a
given area to find the impact of any fleet of PV within the studied area.

2. Use relationship of signal correlation to distance, summation of variances, and an expected dis-
tribution shape from a fleet of PV sites, to estimate the distribution of impact in a fleet of PV
installations.

Method 1 benefits from empirical simplicity however will not generalize to areas larger than (or outside
of) the studied area. Method 2 allows for the analysis of any size area, however relies on strong
assumptions that need to be thoroughly examined. Preliminary results from both methods using the
sample data are included in Section 4.

2.4 Method 1: Effective number of sites

For the purposes of this method, the amount of distributed generation on the system is considered
without regard to the geographic location; this is appropriate for a small spatial area of installations,



where the placement of studied PV arrays and the expected placement of new arrays is uniformly random
over a well defined geographic area.

The normalized variability metrics of an aggregate system are related to the effective number of solar
installations providing power, n.f¢. ness accounts for the varying size of systems, e.g., if a 1kW system
and a IMW system are placed in the same network, overall variability will be driven by the larger system
as its energy dwarfs that of the smaller one. The effective number of sites is calculated by the inverse
Herfindahl-Hirschman Index, HHI~!, shown in Equation 3 where is the share of total network capacity
provided by site ¢, C; is the capacity installation ¢, and N is the set of installations included in the
network. m.sy will equal the actual number of installations, n, if each installation has equal capacity,
and nqpy and will approach 1 if the capacity of one system is much greater than all others. Cj is
calculated using the maximum of an empirically derived clear sky index, however the methodology will
be updated to use the rated capacity of each installation as recorded in the installation data. Variability
metrics of the aggregate system are normalized to the total capacity in the network, >, C;.

Networks of solar installations are sampled by using unique combinations of the 15 systems in the sample
data. For each possible number of installations (1,2,...15) samples of up to 1000 unique combinations
of sites were generated. Each metric is calculated on each unique combination of installations.
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2.5 Method 2. Prediction of aggregate signal distribution

Each measure of variability is represented as a signal from individual installations, the ramping signal,
the AGC signal, and the load-following signal, as shown in Figure 3. The distribution of values in each
signal represents the overall impact of variability on the system planning and operation of the grid. To
obtain the variability measure of a aggregate system of distributed PV, signals from multiple installations
can be summed directly. The variance of this aggregate signal can be calculated from characteristics in
the individual signals as shown in Equation 4, where p;; is the correlation coefficient between sites ¢
and j, oy is the standard deviation of the signal from site I, and IV is the set of all sites in the portfolio
of PV sites.

Oy = > pijoio; (4)
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Following two assumptions, the variance of any set of systems is derived from a general standard
deviation for any individual site, o, the distance between pairs of hypothetical sites, d;;, and the
capacity of each hypothetical site C;. These two assumptions are: Equation 5, any installation (within a
given area, season, and possibly weather regime) exhibits a standard deviation in signal directly related
to the capacity of the installation; and Equation 6, there exists a predictive relationship based on the
correlation between signals from a pair of sites and the distance between those sites. Evidence for the
first assumption is shown through the distribution of standard deviations from signals in the sample
data; evidence for the second assumption is shown through historic relationships of correlation between
generation signals and distance between PV arrays, referenced in the background section. Equation 7
shows the resulting relationship used to find the standard deviation of aggregated variability from a
distributed PV fleet.



pij = f(dij) (6)
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The overall ability of variance estimation is tested by using a mean normalized standard deviation for
the general standard deviation (o in Equation 5), and exponential fit relationships between distance and
correlation.

The shape of the distribution in the aggregate signal is needed, along with the mean and variance, in
order to properly characterize the impact of the total fleet. The shape of a distribution is often described
by its kurtosis (or "peakiness”) where high kurtosis relates to a sharp peak in the distribution and a
low kurtosis has a dull peak or no peak. Distributions of impacts from individual sites typically have a
high peak at 0, resulting from non-cloudy times. When signals are summed, these times do not always
overlap and the kurtosis of the resulting distribution is decreased. Kurtosis is commonly defined as the
fourth standardized moment, shown in Equation 8, however the effect is also estimated by the number
of standard deviations to a percentile, shown for the 95! percentile in Equation 9. Changes in the
shape of each signal's distribution are plotted as the number of installations aggregated into the total

signal increases.
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3 Results and Analysis

3.1 Ancillary Service Capacity Needs

Figure 5 displays the normalized AGC capacity requirements versus the effective number of installations
providing power. Part A of the figure displays the capacity needs for HE 12, where at midday variability
is driven by clouds which are likely to be less correlated between sites. Part B of the figure shows hour
ending (HE) 16, where systematic ramping down of solar generation may cause signals to be more highly
correlated. For AGC, the relationship between morning and midday hours is not pronounced. There
is a distinct decreasing relationship between the effective number of sites and the normalized metric;
however it seems the most of the effect is seen through a change in the variance, particularly in HE 16
where the minimum seems to remain constant regardless of 7.y .

Figure 6 displays the normalized load-following capacity needs for hours ending 12 and 16. The sys-
tematic diurnal ramp has significantly greater impact on load following capacity needs than on AGC



capacity needs. The decrease in requirement with n. s is less pronounced however the overall difference

between morning and midday hours is significant.
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Figure 5: Normalized AGC capacity needs for following an aggregation of solar generation signals during
hour ending 12 (A) and hour ending 16 (B).

It is likely that the large variance seen at low numbers of sites is also a result of the geographic
autocorrelation effect. Where n.sy is low and the relative impact is very high, a few highly correlated
sites are being added together; Where n. ¢ is low and the relative impact is low, a few poorly correlated
sites are likely being added together. Thus if n.r; were able to also account for the distance between
sites, which is related to the correlation of output, it is expected that the overall variance will decrease
at low nqyry and that the decreasing trend will become more pronounced.

The asymptotic value approached by the normalized metric is also affected by geographic autocorrelation
of variability and the small spatial scale from which sites are sampled. All arrays sampled for this study
are contained within a 5km radius area. Thus, as arrays are added to an already densely populated area
(e.g., for large n.syr), the average distance between arrays will remain small (only a few kilometers).
Thus, for geographically autocorrelated variability, even as system diversity increases, average correlation
will plateau to a value based on the geographic area encompassed by the network. For an increase in
network area, it is expected that the asymptotically approached normalized metric will decrease.

The flat slope in Figure 6-B for load following requirements versus n.s; is likely related to systematic
diurnal effects. As seen in Figure 3, most of the diurnal ramps are met by load following capacity.
Because these diurnal effects are systematic, they are expected to be highly correlated between sites
within the same region. Increasing system diversity is expected to have a smaller effect for highly
correlated variability then for less correlated variability from cloud transients.

Figure 7 shows changes in both ACG and load following needs as n.ys increases from an n.s range of
1 to 2 to a range of 11 to 12 installations. The geographic diversity effect is more pronounced for AGC
(which encompasses shorter timescale variability).

The relationship between capacity needs and n.yy is stronger for AGC capacity than for load following

capacity, regardless of hour of day. This effect is also attributable to correlated variability. Larger clouds
are more likely to pass over multiple sites at once and take a longer time to pass over each site. Thus,
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Figure 6: Normalized load-following capacity needs for following an aggregation of solar generation signals
during hour ending 11 (A) and hour ending 16 (B).

for cloud transient induced variability, longer time-scale variability is expected to be more geographically
autocorrelated than shorter timescale variability. This effect corroborated by Mills and Wiser 2010 as
shown in Figure 2.

3.2 Ancillary service ramping requirements

Figure 8 show the maximum normalized ramp in the AGC signal as related to the effective number
of sites. Sustained ramps reduce rapidly, even among sites within a small geographic radius. In fact,
geographic diversity decreases normalized ramp so quickly that adding an additional site may have a
negative effect on the overall likely ramp, not just the normalized likely ramp. These results are promising
for reducing fears of increasing costs of PV interconnection related to voltage control on distribution
systems; specifically, it appears that none of these ramps are likely to approach the dramatic ramps used
by Teleke 2011 [17]. However, it will still be interesting to take a closer look at this effect at higher
levels of penetration and smaller spatial scales to isolate potential ramps is isolated portions of feeders.

3.3 Geographic autocorrelation of impact signals

A relationship between correlation and distance for pairs of sites will be used to predict the distribution
of impacts of additional PV installations using the method described in Section 3.5. The geographic
autocorrelations of ancillary service signals were tested and the 1-min ramping signals were tested and
are shown in Figures 9 and 10. From Figure 9, it appears that the geographic autocorrelation falls to
0 for the AGC signal at distances of less than 2 kilometers. For load following the signals appear to
plateau at 0.4, this is likely due to systematic effects resulting from the morning and evening ramps.
Hourly averages are highly correlated, as expected. Figure 10 shows the geographic autocorrelation
of individual ramps in the sample data. This correlation drops to zero at distances less than 1km; too
quickly to be captured by the sample data.

10
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Figure 9: Geographic autocorrelation of AS requirements for each pair of sites in the sample data

naL J

04} 4

02t E

Correlation between 1-min ramp signals

T L T

. fs..°°:.!=o$ 37

-0.2
0

1000 2000 3000 4000
Distance bebween pairs

Figure 10: Geographic autocorrelation of the signals for 1-min ramps for each pair of sites in the sample
data

3.4 Distribution shape and variance assumptions

Another major assumption for the method described in Section 3.5 is that the shape of the distribution
for all sites in an area will be similar, and that the variance will be directly related to the capacity of
a site. Figure 11 shows "Q-Q plots” that plot the quantile values of a distribution at one sample site
against those of another sample site. A linear relationship in a g-q plot is evidence that both distribution
have the same shape. For the purposes of clarity, gq-q plots of all site pairs are plotted on the same
axis. The left, center, and right axes represent distributions in the ramping, AGC, and load-following
signals respectively. All data is normalized by the standard deviation and differenced to the mean; i.e.,
values on the x and y axes represent standard deviations away from the mean. Vertical lines represent
the average values of percentiles among all sample sites (5%, 25" 50", 75" and 95").

12
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Figure 11: g-q plots for the ramping, AGC, and load-following signals plotted in the left, center, and right
panels respectively. Comparisons for all pairings of sites are plotted on the same axis for clarity. Vertical lines
represent average percentile values among all sites.

Figure 11 shows that for all pairs of signals in the sample data, the g-q lines follow a linear relationship
at least out to the 95th percentile (where most data exists). It also shows the high kurtosis of each of
the individual signals, the 95th percentile is less than 1 standard deviation away from the mean for both
the AGC signal and the ramping signal.

Figure 12 shows box plots of the normalized mean and standard deviation for the ramping, AGC, and
load-following signals. For the preliminary analysis, the mean of the standard deviation is used in the
predictive estimates. However, sensitivity analysis should be completed to address the spread of the
distribution shown in Figure 12.
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Figure 12: Boxplots for standard deviations of the individual ramping, AGC, and load-following signals

The variance prediction method, shown in Equation 7 is tested using sample data, results are shown in
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Figure 13. The mean standard deviation from the sample sites is used as the general standard deviation
for each signal. AGC and ramping signals are assumed to be completely uncorrelated, load-following
correlation is assumed to follow the empirical relationship described in Equation 10 which is derived
from the relationship shown in Figure 9.

pij = 0.6 exp (10‘(1)‘8m> +0.4 (10)
Figure 13 shows that the variance estimation methods works well for a small number of sites, with
10-20% error; and that the estimation accuracy increases with the number of sites aggregated, leading
to errors of less than 10% in 13 aggregated sites. It should be noted that these results are not predictive;
the standard deviations and correlations used to find o, and f(d;;) result from the same data for which
the estimate is derived.
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Figure 13: Boxplots representing the accuracy of the variance prediction method (Eq. 7) using the mean
standard deviations from the sample data.

The shape of the distribution of an aggregated system of PV installations is needed, in conjunction with
variance, to find the overall impact. Figure 14 plots the number of standard deviations to different
percentiles of the aggregate distribution against the number of sites that are aggregated. The flattening
peak is shown through the increasing number of standard deviations out to the 95" percentile (shown
in red), though the resulting distribution still has a significantly high kurtosis. The distribution tails
flattening is shown through the 99" percentile decreasing in number of standard deviations away from
the mean. This same effect is exhibited in the maximum and minimum, though these values are much
more variable and much further from the mean.
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Figure 14: Shape of aggregate signal distribution versus the number of sites aggregated. The distance from
the mean of 7 percentile values are plotted, normalized to the standard deviation of the entire signal. Legend
applies to each panel

4 Discussion and Future Work

For method 1, the normalized impact metric appears to asymptotically approach a single value as ny
increases; however neither the asymptotic metric value, nor the n.ys are likely generalizable to networks
over larger areas. As the size of the network increases, so will the distribution of distances between each
new site to every existing site. Specifically, the average distance between array will increase with the
radius of the network. Thus the asymptotically approached value of any variability metric is expected to
decrease as the geographic size of the network increases. This effect will be better characterized with
additional data over larger geographic areas and longer time-periods.

Method 2 outlines a more general approach that can be applied to areas of any size, and preliminary
results from sample data are promising that this approach will yield significant results. However, the
preliminary estimates are not predictive, and their accuracy may be dependent on consistent weather
patterns. Specifically, the general standard deviations were characterized in the same time-period (and
thus the same weather regime) as the signals they were used to predict. Future work will stratify the
analysis based on weather regimes, allowing for scenario or stochastic analysis.

Another limitation of Method 2 is that it is not as accurate for maximum or minimum values. The smaller
the acceptable confidence interval, the more accurate that the prediction is likely to be. Thus even a
99% confidence interval is likely to be a much more accurate prediction that a likely maximum value in
an aggregate signal. This is more significant for a small aggregation of systems, where distribution tails
are wider. Future work will include a comparison of the two methods’ ability to account for maximum
and minimum fluctuations.

Finally, Method 2 currently does not address systematic effects dependent on the time of day. It is
likely that cloud transient impacts will be smaller in the mornings and evenings, however diurnal effects
have large impacts in these hours. In future work, the analysis will be performed separately for each
hour of the day do control for these effects.
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4.1

Future deliverables for this task

. Stratified statistical analysis to account for hour of day, season, and weather regime.

. Comparison of results from each empirical prediction method to account for the geographic area

of the portfolio and the maximum and minimum of impact signals.

. Scenario analysis for impacts over a feeder footprint (low, medium, and high penetration)
. Scenario analysis for impacts over a Sub-Load Aggregation Point.

. Comparison of small distributed generation (<500 kW) to centralized/community generation

(>500 kW).
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