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Backdrop:

e Continued growth in solar energy installations.

* Increased interest in energy storage deployments.

Demonstration:

e Foresight improves system management.

* Feeders have a larger solar hosting capacity then previously assumed.

e Distribution feeder voltage quality can be improved by proper energy
storage siting and operation.



Task Overview

e Task 2: Operational Solar Forecasting

e Task 3: Operational Feeder Net Load Forecasting

e Task 4.1: Distribution Feeder Hotspots

e Task 4.2: Energy Storage Siting and Sizing on Distribution Feeders
e Task 4.3: Mitigate Grid Fluctuations ae

Q&A
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Task 2: Operational Solar
Forecasting



Numerical Weather
Prediction (NWP)

-
o ——

-
—————————

-117.8 -117.5 -117.1

Lon. (deg.)

-116.8

NWP

Satellite

- Most accurate solar forecast for >5 hours
in advance

- Large scale computational physics models
- Pressure, Geopotential, Velocity,
Temperature, and Water

- Initialized by combination of observation
and model output



Domain/Time
Options
Ax (km) 2.5
Vertical Pts. 75
CFL 0.3
Output Interval (m.) 15

Spin-Up Interval (hr.)

Initial and Boundary

24+ (Cycling)
12 UTC NAM

Ensemble Prediction System

WRF (Weather Research and Forecasting) Model
- Physics chosen to promote cloud cover

- High-Density Vertical Levels

- Multi-physics ensemble prediction system

Analog Ensemble Correction

e Training period: May 2014 — Apr 2015

e Validation period: May 2014 — Apr 2015 (excluding
current day and current day + 5 days)



SDG&E Distributed Energy Resource
I\/Ianagement System (DERMS)

e Systemwide load flow analysis

e Switching
* Emergency Operations
e Forecasts used operationally

e Solar forecast input as Solar
Potential Index by Climate Zone
e 0600 PT Delivery Time
e Hourly for intra-day and day-ahead




Validation

e Against SolarAnywhere satellite data and SDG&E ground stations
e By climate zone

e Original WRF and Analog Ensemble correction

9001
7001

5001

400

SolarAnywhere
WRF

| = WRF + Analog
kn2i | an22 ' kn 2 ' Ensemble

June 20 June 24

Global Horizontal Irradiance [W m-2]



MAE (W/m? )

Monthly mean hourly MAE

SD Coast SD Foothills
80 — 80 —
60 45 60
£
40 = 40
<
20 < 2
0 0

Persistence WRF Orig WRF AnEn Persistence WRF Orig WRF AnEn

Final product (AnEn) improves 20% over smart persistence.
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Task 3: Granular Operational
Net Load Forecasting

Carlos F. M. Coimbra and Hugo T. C. Pedro
Center for Energy Research

University of California San Diego



Task description Q
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» Develop accurate net load forecast models for 68 SDG&E substations
and feeders.

e Deploy multi-layer stochastic learning forecast engines to predict the
substations and feeders net load.

* Produce intra-hour (5 to 60 min) and multiple days-ahead net load
forecasts.

e Use co-located UCSD sky imagers and SDG&E solar irradiance sensors
as proxy indicators of cloud cover.



RRRRRRRRRRRRRRRRRR

lllllllllllllllllllllllll

Tools and data processing



Data De-trending

e Attempts to remove daily trend.

Load = [De-trended Load] x [Daily Trend]

 Daily trends are computed as the mean

load in 5 min bins.

* Benefits the performance of the stochastic
forecasting models by removing consistent 03

trends in the data.
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e Sky images are used as input to the intra-hour forecast models

 Normalized Red/Blue ratio (NRBR) image features are extracted .
(a) (b)

* These features are used as
input to the intra-hour

forecast models
e North American Model (NAM)

o .H H .N

Top: Clear-sky, overcast and partly cloudy images.
Bottom: the resulting NRBR images.



Forecast models

 Three models are used in this work
e Persistence model
e Support Vector Regression (SVR)
e Artificial Neural Networks (ANN)

e Supervised models (ANN, SVR) are trained
with historical data and validated against
an independent testing set.

e Validation metrics: MBE, RMSE, MAPE, etc.

Measured data

Sky-images
(if available)

Measured data

NAM Data

COIMBRA ENERGY GROUP
INIVERSITY OF CALIFORNIA SAN DIEGO

Intra-hour

Forecast

Day-ahead

Forecast
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Forecast Results



Intra-hour forecast: Time Series

L
[
COIMBRA ENERGY GROUP
UNIVERSITY OF CALIFORNIA SAN DIEGO
() (b)
[§] 6 "
—— Measured —— Measured
— ANN —S8VR

Net Load (MW)
e L

ad
T

1 ] L
0%.-’]6 03/17 03/18 03/16 0317 D3/18
Time Time
1 1
I Persistence I Persistence
sk _—AN'N sk _—SVR

g 0.6
=3
=04

09!1 6 03/17 03/18
Time

Sample time series of net load forecasts and absolute forecast errors (¢) for the Feeder B for a period of 48h
using (a) ANN and (b) SVR. The timestamps indicate midnight (00:00) PDT.



Intra-hour forecast: Error metrics

Feeder A Feeder B
Forecast Horizon [min. | 10 20 30 10 20 30
Per MAPE | 0020 0037 0052 | 0020 0035  0.049
RMSE | 0.043 0066 0084 | 0056 0092  0.127
ANN MAPE | 0.024 0039 0050 | 0018 0026  0.033
RMSE 0.063  0.080
ANN with Im-ex ~ MAPE | 0.025 0037  0.042 0.024  0.028
RMSE | 0.040 0056  0.064
SVR MAPE | 0032 0044 0053 | 0019 0026 0032
RMSE | 0.044 0060 0072 | 0045 0063  0.079
SVR with Im-ex MAPE | 0.027 0038 0043 | 0020 0026  0.029
RMSE | 0.046  0.061 0.048 0065  0.074

COIMBRA ENERGY GROUP

UNIVERSITY OF CALIFORNIA SAN DIEGO

Daytime errors for reference persistence forecasts, endogenous forecasts (just measured data used
as input), and forecasts with image data for 10-, 20-, and 30- minute horizons. The red boxes identify
the best model as a function of the relative RMSE.



Day-ahead forecast: Time Series

L
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Sample time series of 2-day ahead net load forecasts (top row) and absolute forecast errors (bottom row) for
the Feeder B for a period of 1-week using ANN (left column) and SVR (right column). Persistence forecast errors
are shown for reference in grey. Timestamps are in UTC.



Day-ahead forecast: Error metrics

COIMBRA ENERGY GROUP
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1 day ahead 2 days ahead
Persistence ANN SVR Persistence ANN SVR
Feeder A 0.103 0.119
MAPE Feeder B 0.054 0.066
Feeder C 0.079 0.104
Feeder D 0.094 0.118
Feeder A 0.473 0.522
rRMSE Feeder B 0.267 0.33
Feeder C 0.156 0.207
Feeder D 0.178 0.166 0.225

Net load forecasting results for 1 and 2 days forecast horizon for four feeders. The red boxes identify the best

model as a function of the relative RMSE and MAPE.



Conclusions — Net Load Forecasting g
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* Intra-hour and multiple day-ahead forecasts were successfully
developed for the 68 SDG&E substations.

 The models were assembled into forecasting engines that are ready
to be deployed in real time.

e Very small latency allows for operational forecasts if real-time
telemetry data is made available.

 Data de-trending and image processing algorithms were
implemented to improve the performance of all forecasts
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Task 4.1: Distribution Feeder
Hotspots



Voltage Rise due to PV

HV EQUIVALENT MV/LV I
Simplified power system MV v
A B D
base case with PV
pu pU T
1.05 1.05+
Max. Load \I\\ -\'I I:
0.95 0.957
A B o D A B C D
pu pu T
/
1.05 — ||uost |
Min. Load = =)
0.95 0.95+
A B 6 D 1A B C D
PUT Tap down duito solar
1.05
o /
0.95 / I:
A B

[1]: IEA, Report IEA-PVPS T5-10, 2002

On-Load Tap Changer



14 SDG&E Distribution Feeders

Gircuitid______ 1 12 13 4 5 16 7 8 Jo 10 i1 12 113 114 |

Feeder Type urban urban urban Urban urban urban urban wurban urban urban urban rural rural rural

Total Feeder length EE] 58 41 45 52 55 49 56 45 51 40 35 52 115
(km)

# Supply 298 312 285 243 416 324 212 139 260 376 322 281 276 649
Transformers

Peak Load (mva) 8.0 9.7 9.5 5.9 10.8 13.2 9.8 8.8 8.0 13.6 8.4 4.9 3.9 6.3
# Capacitors / 1/ 1/ 3/ 1/ 1/ 1/ (3 2/ 1/ 4/ 27/ (7 @/ (@7
Rated Reactive 1.2 1.2 1.2, 1.2 1.2 1.2 1.2,1.2, 1.2, 1.2 1.2, 1.2, 1.2, 1.2 1.2
Power (Mvar) 0.8, 1.2 1.2 1.2, 1.2 1.2

1.2

# Substation
Transformers and
Voltage Regulators

# PV systems 180

Peak PV output 1.9
(MW,)

2015 PV
Penetration Level
(%)

Substation set- 1.02
point voltage (pu)



Hotspot Criteria

PV penetration (installed PV capacity / load peak) from 0 to 300%.
Hotspots consist of:

e Over- or under-voltage at a node that exceeds +5% of a nominal 12 kV

e Steady-state power flow that exceeds the thermal rating of the
conductor

Also quantified:

e On-Load Tap Changer (OLTC) operations

e Capacitor switches

e \Joltage variability (step changes in voltage)



Sample Results for Feeder 3

PV Distribution: Feeder 3
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All feeders

Feeder [Existing [Lowest PV Max Voltage Variability [Transformer Tap Tap Changes at 300% |Rating of

PV Pene- [Penetration at Lowest PV
tration |Coinciding with |Penetration Coinciding |[/day] [/day]
with a Hotspot

Changes at 0% PV [PV Penetration conductor/s creating|Section
a feeder hotspot at |Rating

lowest PV
penetration




Conclusions — Feeder Hotspots

* Most feeders have a hosting capacity far exceeding 15%
* Many feeder sections show no issues even at 300% penetration

* Most hotpots arise on feeder branches.
e Some short-term voltage variability issues.

* Tap operations:
* On 6 feeders no change from 0 to 300%
e Large increase on some other feeders



Task 4.2: Energy Storage
Siting and Sizing



How to cope with solar PV adoption?

O-F’V:QL
|

BESS PV Load

BESS: Battery Energy
Storage Systems

2nd
Quadrant
PV

P

-

3l'd
Quadrant

1st

Quadrant

PPVI

' q,

Povz

4th
Quadrant

PP\B

PPV; I:’L

Voltage Drop
Region

Voltage Rise

Region

Battery
charging
Pa PL I Pey
<< l >
3rd I QL 4th
Quadrant Quadrant

Battery
discharging

3rd | L
Quadrant

4th
Quadrant

[1]: Alam et al., “Distributed energy storage of mitigation of voltage-rise impact caused by rooftop solar PV”




But how to allocate batteries in the grid?

(Sub)transmission

Distribution

B Load point
H Load point with PV

Residential customer
D Commercial customer
[ Micro-grid

4 4

o.? .o

BESS: Battery Energy Storage Systems

(Sub)transmission

Distribution I I E

. Battery Energy Storage System i i

Some of many questions:
Where do we need them?
What size?

How should we operate them?
How will we pay for them?




Problem Formulation

The goal: What: To optimally site and size BESS(s)
Where: Anywhere in a distribution network
Why: To mitigate voltage fluctuations caused by solar PV

Acost cost penalty parameter

max  Acost * Viev- - . .
cost ~ Vdev-reduction voltage deviation reduction

17dc:v—r(}dll(:ti(m
where Awie = J (0 Ks) ns: system locations of a set
ks: system capacities of a set
Vdcv—rcduction - f(nsa ks) m: # of systems

Nai : permissible maximum locations
Kai : permissible system locations

ks = {ki,...,kn}
nNg = {ll,...,lm}

{ﬂ,_g} ’CH} € C(Na”, Kﬂu)



Data and Test Network

Solar Data: IEEE8500 test feeder one-line diagram
15-minute solar PV output data from UC San

Diego campus systems during the year 2014

e ! S == Regulator
g | 3 1

il F 05 |
e L S
: Ea; ‘ %‘u; '
Load Data: Test Network:
15-minute synthetic data generated Radial distribution feeder with multiple
for San Diego region by Open Energy feeder regulators and capacitors with
Information during the year 2014 balanced 120V secondary loads on the

service transformers.



Example power-flow simulation overview

Power Flow for PV + BESS case
Aggregated Solar Resource and Load PV BESS at Substatlon

6000+—NetDemand o Solar Power | \

4000

P [KW]

2000(

0

Operation of Batteries

e -—Sta:fe of Charge : . ! l ! B
oy Charge Signal
:j 50l._¥_Discharge Signal .
(@]
9 o
0 i | |
\oltage DeV|at|ons in PV and PV+BESS case
L2 . . ' « PVonly o PV+BESS|
E 0.13 . 5005,95005533}.“.
s LR oo i
g01251l.. ........ OQQ ’ .......... ...58506
LY ®e28023808882850300°
0.12¢ L L L I I
06:00 09:00 12:00 15:00 18:00 21:00

Time of Dav [hh:mm]



Sample results — siting and sizing

645 permissible nodes on
the primary lines.

50% PV penetration for a
partly cloudy day.

BESS units (purple).

Loads with PV ( )
Loads ( )

Each dot sized to the capacity.




Siting Convergence

o 3 different model runs with the same settings
* 6 frequently chosen node clusters shown with red circles.
o Consistent clusters emerge

IEEE8500 test feeder with 50% PV penetration for a partly cloudy day.




Conclusions — Battery Siting and Sizing

Main Level Sub-Level
(Allocation) (Operation)
Generate initial population with
Novel Genetic A|gor|th m-based bi-level random BESS allocation Determine battery
. L. . [ dispatch for each
allocation optimization method / BESS
— Decode population '
1.Peak shaving for aggregated _ \
Evaluate fitness S

customers helps voltage mitigation.

Solve steady state
power flow

2.Proposed method has well-behaved
convergence in small siting sets.

Select 29

Recombine

'

Mutate
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Task 4.3: Understanding and
Counteracting Real Power
Oscillations

Xin Zhao and Raymond de Callafon
Department of Mechanical and Aerospace Engineering

University of California San Diego



Motivation

PMU measurements and real power oscillations on micro-grid

Real Power [MW]

10.5

. |[®UCSanDicgo ®
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11111
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Experimental Setup

Testbed for control of AC power flow — system diagram

PV
System

' i 8 Programmable
Sensors i DC Power Supply
f i f
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Event Detection and Model Fitting

e Left: Event detection based on by adaptive threshold crossing of

filtered rate of change signal
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* Right: Event modeling using step based realization algorithm
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Conclusions — Counteracting Power
Oscillations

e Real-time detection of power oscillations

e Characterized actuator and disturbance dynamics
 Model grid events

e Actuate inverter to counteract grid oscillations



Overall Conclusions g
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 All distribution feeders have large solar hosting capacity
* Voltage issues often confined to small areas of the feeder.
* Improved coordinated voltage regulator action will further increase hosting
capacity.
e Smart inverters will further increase hosting capacity.
e Battery storage can be sited systematically
e Optimize benefits for grid operation.
e Prevent outages by counteracting oscillations.

e Lower integration costs for solar photovoltaic.



