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ABSTRACT 

Net load forecasts for 68 substations were developed and validated for forecast horizons ranging from 10 
min to 4 days. The methods implemented include Artificial Neural Networks (ANN), Support Vector 
Regression (SVR), sky-imaging techniques, and other time series methods. The forecasting models were 
trained and validated using measurements of the net load and assessed using common statistic metrics (MAE 
and rRMSE). The assessment results show that stochastic-learning models significantly outperform the 
reference persistence model. These models were assembled into forecasting packages that are operational 
with real-time telemetry data. 
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INTRODUCTION 

Distributed solar generation is growing rapidly due to the net energy metering tariffs and other incentives 
[1]. The variable rooftop solar generation adds substantial uncertainties in power demand at the substation 
level [2] and changes the variability of net load time series. In general, for operating regions with higher 
solar penetration levels, the variability in solar power production propagates into the load profile and 
increases the relative error of net load forecasts during the daytime. 

Uncertainties in electric loads need to be compensated for using operating reserves or ancillary generation, 
which increase the overall costs for utilities, customers, system operators, and other market participants [3]. 
Short-term load forecasts play a key role in mitigating the uncertainty of loads and are essential to decrease 
the costs of operation, control, management, balancing and scheduling of the electric grid. For instance, 
intra-hour load forecasts are needed for real-time control and load following [4]. Day-ahead load forecasts 
are required by Independent System Operators (ISOs), utilities, and electricity market participants for 
operation planning and unit commitment of generating plants.  

To accurately forecast the net load with the influence of distributed solar production, this work describes a 
methodology to reduce the uncertainty for all forecast horizons using two popular stochastic learning models: 
Artificial Neural Network (ANN) and Support Vector Machine (SVM). The developed forecasts are 
operational providing that there is robust real-time telemetry data available. 

This methodology was applied to data from 68 substations. The developed forecasts for 68 substations were 
prepared in operational packages. The forecast packages were validated in real-time scenario using measured 
net-load data and the forecast performance was quantified in terms of Mean Absolute Error (MAE) and 
relative Root Mean Square Error (rRMSE) and is shown for each substation in the Appendix. The forecast 
results for four representative feeders (denoted as Feeder A, B, C, and D) are analyzed and presented in detail 
to demonstrate the general performance of the forecast packages. 

METHODOLOGIES 

The developed models were prepared in forecasting packages for all 68 substations. Each package includes 
all necessary function files, processing algorithms, and trained models to forecast the net loads. These 
forecasting packages are ready to be applied in real time operations. The forecast can be represent as: 

𝐿𝐿� = 𝑓𝑓(𝑇𝑇, 𝐼𝐼1, … , 𝐼𝐼𝑁𝑁, 𝑡𝑡1, … , 𝑡𝑡𝑁𝑁), 

where T is the time when the forecasting package is called and executed, f represents the forecasting function, 
I represents both endogenous and exogenous inputs, t represent the timestamps associated with the inputs, 
and 𝐿𝐿� represents the prediction value. For the intra-hour packages, 𝐿𝐿� are predictions of 1-minute averaged 
net loads for 10-, 20-, and 30-minute horizons. For the day-ahead packages, 𝐿𝐿� are predictions of 1-hour 
averaged net loads for 1-, 2-, 3-, and 4-day horizons. In this work, the forecasts are produced using Artificial 
Neural Networks (ANN) and Support Vector Regression (SVR). 

ANN and SVR are popular stochastic-learning tools for pattern recognition, data classification and 
regression, and have proven to be useful for non-linear input/output mapping [2, 3]. Therefore, both ANN 
and SVR are employed to implement the net load forecasts. The weights and parameters of both ANN and 
SVR are estimated using the training dataset. 

The employed ANN places the basic processing elements (named neurons) in layers and allows only forward 
connections of the neurons. The layers between the first input layer and the last output layer are hidden layers. 



 

3 

Neurons take in weighted sum of inputs Xj through various layers and produce an output using an activation 
function.  

Yi = f��wijXj

N

j=1

�, 

where the Yi is the output from the i-th neuron, and f is an activation function. For this study, the structure 
of the ANN follows the optimized scheme that was obtained in previous work using a Genetic Algorithm 
(GA).  

The SVR modeling uses inputs that are known as support vectors and can be mathematically expressed as  

f(X) = < w, X > +b, 

where w represents the weights and b is a constant. The optimization problem is solved with the following 
objective and constraints, 

min
w,b,ξ,ξ∗

1
2

w′w + C� (ξi + ξi∗)
l

i=1
 

 

subject to Xi − (w′f(X) + b) ≤ ϵ + ξi, 

(w′f(X) + b) − Xi ≤ ϵ + ξi∗, 

      ξi , ξi∗ ≥ 0, i = 1, … , l, 

 

where ξi , ξi∗ are the upper and lower training errors subject to an ϵ-insensitive tube and C is the cost of 
the error. Therefore, the parameters C , ϵ , and the mapping function f  control the regression quality 
obtained using SVR. A radial basis function was used as a mapping function while cross-validation was used 
to compute the other parameters [3]. 

The net load data used as input to the models explained above is preprocessed before being assimilated. In 
the real-time scenario, the net load data are not evenly sampled resulting in variable sampling intervals (Fig. 
1). Consequently, the number of available endogenous inputs varies adversely affecting the performance of 
the forecasts. To overcome this issue an interpolation algorithm was developed and employed in each of the 
forecasting packages. The interpolation algorithm analyzes the input time series and interpolates a constant 
number of inputs to the forecasting package. This procedure significantly improves the robustness of the net 
load forecasts.  
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Figure 1: Sample time-series of net load recorded at the Feeder A illustrating a variable sampling rate. 

The key inputs for intra-hour forecast consist of information retrieved from sky-images. The inputs are 
retrieved using an efficient image-processing algorithm [5]. This algorithm translates the sky images into 
numerical image features. These image features, which represent cloud cover information that are critical 
for determining short-term solar ramps, are used as inputs to the multi-layer stochastic learning forecast 
engine. The image-processing algorithm includes three major procedures: (1) image masks are manually 
annotated to exclude the ground obstacles (e.g. trees, buildings); (2) normalized red blue ratios (NRBRs) are 
calculated for each unmasked pixel; (3) image features (mean, std, entropy) for a sky image are statistically 
derived based on the NRBRs of all its unmasked pixels. Examples of the image processing are illustrated in 
Fig. 2. This algorithm is high-speed (less than 1 second for each sky image). With minimal adjustments it 
could be applied to images from different cameras e.g. as installed by the utility at substations.  

The image-processing algorithm was applied to a UC San Diego Sky Imager (USI) located in Feeders A and 
B to create a database of sky image features. This database was created with images from October 2014 to 
May 2015. The database was used for both training and validation of the stochastic learning forecast engine. 
No sky imager data was used at the other 66 feeders. Also the sky imager was operated in ‘resource 
assessment’ mode, i.e., no solar forecast maps were generated from the images.   

Treating weekdays and weekends separately did not result into improved forecasting performance. For this 
reason, the forecasting packages handle the input data always the same way regardless of the type of day the 
forecast is targeting.  
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Figure 2: Examples of original images (top row) and normalized RBR (nRBR) images (bottom row) recorded at 

Feeder B, which are returned from the developed image-processing algorithm period. The gray scales indicate 

the nRBR magnitudes in each image.  

ERROR METRICS 

Two error metrics were used in this work to assess the forecast performance: Mean Absolute Error (MAE) 
and relative Root Mean Square Error (rRMSE). MAE is defined as: 

MAE = 1
n
∑ | L

�t−Lt
Lt

|n
t=1 , 

rRMSE gives the information about the spread i.e., standard deviation in the errors: 

rRMSE =
�1

n∑ (L�t − Lt)n
t=1 

2

1
n∑ |Lt|n

t=1

, 

where the denominator 1
n
∑ |Lt|n
t=1  is the averaged value of net load.  

Short-term forecasts 

ANN and SVR short-term forecast packages were implemented for 10-, 20-, and 30-minute forecast horizons 
with 10-minute resolution. The forecast validation results for the 68 substations are presented in the 
Appendix in terms of MAE and rRMSE. The forecasts for four representative feeders are presented in this 
section in more detail to demonstrate the general performance of the forecast packages. The data used for 
intra-hour forecasts were collected between Oct. 2014 and Mar. 2015 and divided into two disjointed 
datasets: the training dataset (the first three weeks of each month) for model training/optimization and the 
validation dataset (the last week of each month) for model validation. Sky images are only available for two 
of the representative feeders; Feeders A and B and exogenous forecasts can only be applied there. For all 
other substations, we applied endogenous forecasts which consider only the substation power output time 
series. Baseline forecasts were developed using endogenous inputs only without employing sky-image 
inputs. The endogenous inputs are the lagged values of net load ranging from zero to one hour in steps of 10 
minutes. 

Sky images are only available during day time. Therefore, the comparisons of error metrics are limited to 
forecasts during day time. The comparison between sky-image enhanced forecasts and baseline forecasts in 
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terms of MAE and rRMSE is illustrated in Table 1. For Feeder A, the rRMSEs of forecasts with sky imagers 
(Im-ex) are averagely 4% lower than that of baseline forecasts. For Feeder B, the rRMSEs of Im-ex forecasts 
are averagely 5% lower than that of baseline forecasts. When Im-ex inputs are used, improvements in term 
of rRMSE for Feeder B are higher than that for Feeder C. This is expected because that the solar penetration 
level, which is defined as the annual solar energy produced divided by the annual total load on the feeder, of 
Feeder B is significantly higher than that of Feeder A. The overall solar penetration levels at both feeders 
are still very low (2.4% for Feeder C, and 5.8% for Feeder B). Therefore, Im-ex forecasts only achieve 
marginal improvements in term of rRMSE for these two feeders. The benefits of Im-ex inputs are expected 
to increase for feeders with higher level of solar penetration.  

Table 1: MAE and rRMSE (daytime only) for reference persistence forecasts, baseline endogenous forecasts, 

and forecasts with image features as exogenous inputs for 10-, 20-, and 30- minute horizons. The investigated 

models are the ANN and SVR models. Note that only the two feeders with available sky imager data are 

included in this Table. 

  Feeder A Feeder B 

Forecast Horizon  [min.] 10 20 30 10 20 30 

Per MAE 0.020 0.037 0.052 0.020 0.035 0.049 

 rRMSE 0.043 0.066 0.084 0.056 0.092 0.127 

ANN MAE 0.024 0.039 0.050 0.018 0.026 0.033 

 rRMSE 0.040 0.059 0.071 0.044 0.063 0.080 

ANN with Im-ex MAE 0.025 0.037 0.042 0.018 0.024 0.028 

 rRMSE 0.040 0.056 0.064 0.044 0.059 0.073 

SVR MAE 0.032 0.044 0.053 0.019 0.026 0.032 

 rRMSE 0.044 0.060 0.072 0.045 0.063 0.079 

SVR with Im-ex MAE 0.027 0.038 0.043 0.020 0.026 0.029 

 rRMSE 0.046 0.061 0.068 0.048 0.065 0.074 

Example time-series of enhanced forecasts and corresponding absolute errors are shown in Fig. 3 for Feeder 
B for a period of 48 hours. The daytime forecasts consider image features as exogenous inputs while the 
nighttime forecasts uses only endogenous inputs. Feeder B has a solar penetration level of 5.79%, and the 
impact of solar variability on the net load time series can be seen in Fig. 3, particularly around noon when 
the solar power reaches its daily maximum. The improvement achieved using stochastic models with 
enhancement methods over the reference persistence model is noticeable and is clearly presented in the time 
series of forecast errors. The highest improvements are observed during midnight and early morning when 
the net load time series has a monotonous and smooth trend. During the middle of the days when exogenous 
inputs are available, both ANN and SVR forecasts achieve significantly lower error than the net load 
persistence forecasts. 
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Figure 3: Sample time series of net load forecasts and absolute forecast errors (ε) for the Feeder B for a period 

of 48h using (a) ANN and (b) SVR. The timestamps indicate midnight (00:00) PDT. 

Day-ahead forecasts 

Day-ahead forecasts use different exogenous data than short-term forecasts. For long forecast horizons, sky 
images are not useful because cloud cover information derived from them is too short-lived. Instead, for day-
ahead forecasts, the models use data from numerical weather prediction models. In this work, we use the 
solar irradiance and cloud cover forecasted by the North America Mesoscale Model (NAM). This model 
provides data on a 12 km x 12 km spatial grid that covers the continental United States. Forecasts are 
generated four times daily at 00Z, 06Z, 12Z and 18Z, with hourly temporal resolution for 1-36 h horizons 
and 3 h resolution for 39-84 h horizons. After downloading the data, we identify the NAM grid node closest 
to the feeders, extract the relevant variables and interpolate them to hourly time intervals coincident with the 
net load data. Using measured and NAM data the day-ahead ANN and SVR forecast models were developed 
and validated for the 68 substations for 1-, 2-, 3-, and 4-day forecast horizons with 1-hour resolution. All the 
day-ahead forecasting packages were validated using 1-year testing data and their forecast performance is 
presented in the Appendix.  

The forecast performance in terms of MAE and RMSE are presented in Tables 2-5 for the four representative 
feeders. The persistence model is used as a baseline model to benchmark the implemented net load 
forecasting models. For all models, both the MAE and RMSE increase with the forecast horizon, regardless 
of the locations. For example, the persistence RMSE at the Feeder D increases from 0.178 to 0.235 (18% to 
24%) when the forecast horizon increases from 1-day to 4-day. For all feeders, the stochastic learning models 
achieve error metrics that are significantly lower than the reference persistence model, particularly for longer 
horizon forecasts. For example at the Feeder A, the RMSE of 2-day ahead SVR forecasts is 0.428 and the 
RMSE for the persistence model is 0.522, an improvement of 18%. The sample time series of forecasts and 
corresponding errors for 2-day forecasts are presented in Fig 4. These figures clearly show the improvements 
of the stochastic learning models over the reference persistence models, particularly during periods of large 
ramps when persistence model has large errors.  
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Table 2: Net load forecasting results for 1 day forecast horizon for the four feeders. 

  Persistence ANN SVR 

 

MAE [-] 

Feeder A 0.103 0.1 0.095 

Feeder B 0.054 0.053 0.052 

Feeder C 0.079 0.087 0.08 

Feeder D 0.094 0.086 0.087 

 

rRMSE [-] 

Feeder A 0.473 0.442 0.421 

Feeder B 0.267 0.253 0.249 

Feeder C 0.156 0.165 0.158 

Feeder D 0.178 0.16 0.166 

 

Table 3: Net load forecasting results for 2 day forecast horizon for the four feeders. 

  Persistence ANN SVR 

 

MAE [-] 

Feeder A 0.119 0.110 0.098 

Feeder B 0.066 0.062 0.060 

Feeder C 0.104 0.103 0.101 

Feeder D 0.118 0.102 0.106 

 

rRMSE [-] 

Feeder A 0.522 0.505 0.428 

Feeder B 0.330 0.308 0.293 

Feeder C 0.207 0.197 0.202 

Feeder D 0.225 0.196 0.204 

 

Table 4: Net load forecasting results for 3 day forecast horizon for the four feeders. 

  Persistence ANN SVR 

 

MAE [-] 

Feeder A 0.121 0.113 0.105 

Feeder B 0.070 0.067 0.064 

Feeder C 0.110 0.110 0.107 

Feeder D 0.122 0.109 0.110 

 

rRMSE [-] 

Feeder A 0.516 0.502 0.444 

Feeder B 0.352 0.343 0.311 

Feeder C 0.217 0.215 0.215 

Feeder D 0.240 0.214 0.217 

 

Table 5: Net load forecasting results for 4 day forecast horizon for the four feeders. 

  Persistence ANN SVR 

 

MAE [-] 

Feeder A 0.141 0.124 0.116 

Feeder B 0.073 0.066 0.064 

Feeder C 0.112 0.115 0.110 

Feeder D 0.117 0.114 0.110 

 

rRMSE [-] 

Feeder A 0.609 0.540 0.490 

Feeder B 0.369 0.339 0.315 

Feeder C 0.225 0.234 0.229 

Feeder D 0.235 0.228 0.221 
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Figure 4: Sample time series of 2-day ahead net load forecasts (top row) and absolute forecast errors (bottom 

row) for the Feeder B for a period of 1-week using ANN (left column) and SVR (right column). Persistence 

forecast errors are shown for reference in grey. The timestamps are in UTC. 

The forecast packages are implemented in real-time for four representative SDG&E feeders (A, B, C, and 
D). The online-demonstration of the forecasts is available at: 

http://132.239.222.136/CSI4/DayAhead_Forecasts.html (real-time update of these forecasts depends on the 
availability of real-time data). Operational forecasting was live for about 2 months and frequent issues with 
the PI server administration prevented longer operational testing.  

Conclusions 

Net-load forecast for intra-hour and multiple day-ahead forecasts were successfully developed for the 68 
substations in the SDG&E operating region. The models were assembled into forecasting packages that are 
operational. The very small latency times allows for producing operational forecasts given that robust real-
time telemetry data is available from each substation. Advanced enhancement methods such as interpolation 
and image-processing algorithms were implemented to enhance the performance of forecasts. The models 
were validated using measured net load data showing that they outperform the baseline models in terms of 
MAE and rRMSE.  

 

http://132.239.222.136/CSI4/DayAhead_Forecasts.html
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Appendix 

Table A-1: Intra-hour net load forecasting results for all 68 feeders, net load data is not available for location 

17, 45, and 55. 

 MAE [-] rRMSE [-] 

Locations 10-min 20-min 30-min 10 min 20 min 30 min 

1 0.02 0.04 0.05 0.04 0.06 0.07 

2 0.06 0.14 0.15 0.06 0.09 0.11 

3 0.01 0.02 0.03 0.04 0.07 0.09 

4 0.01 0.02 0.03 0.04 0.08 0.10 

5 0.03 0.04 0.05 0.07 0.10 0.13 

6 0.02 0.02 0.03 0.05 0.07 0.09 

7 0.01 0.02 0.02 0.05 0.09 0.12 

8 0.07 0.11 0.12 0.11 0.15 0.18 

9 0.01 0.02 0.03 0.04 0.07 0.09 

10 0.03 0.04 0.05 0.11 0.15 0.19 

11 0.01 0.02 0.02 0.07 0.10 0.12 

12 0.01 0.01 0.02 0.04 0.07 0.10 

13 0.02 0.03 0.04 0.05 0.08 0.10 

14 0.01 0.02 0.02 0.03 0.04 0.05 

15 0.01 0.01 0.01 0.03 0.05 0.07 

16 0.01 0.01 0.02 0.04 0.06 0.07 

17 NaN NaN NaN NaN NaN NaN 

18 0.01 0.02 0.02 0.06 0.09 0.11 

19 0.01 0.02 0.02 0.07 0.09 0.12 

20 0.05 0.12 0.15 0.08 0.10 0.11 

21 0.03 0.05 0.06 0.06 0.10 0.12 

22 0.03 0.05 0.06 0.07 0.10 0.13 

23 0.01 0.01 0.02 0.04 0.05 0.06 

24 0.01 0.01 0.02 0.04 0.07 0.10 

25 0.01 0.01 0.03 0.04 0.08 0.14 

26 0.01 0.02 0.02 0.06 0.15 0.17 

27 0.01 0.02 0.05 0.05 0.09 0.14 

28 0.01 0.01 0.02 0.04 0.07 0.09 

29 0.01 0.01 0.02 0.04 0.06 0.08 

30 0.01 0.01 0.02 0.03 0.05 0.06 

31 0.01 0.01 0.02 0.03 0.05 0.06 

32 0.01 0.02 0.02 0.05 0.08 0.11 

33 0.07 0.11 0.12 0.04 0.08 0.10 

34 0.07 0.07 0.06 0.04 0.07 0.09 

35 0.01 0.02 0.02 0.04 0.07 0.09 

36 0.01 0.01 0.01 0.07 0.09 0.13 

37 0.01 0.01 0.01 0.04 0.06 0.09 

38 0.01 0.01 0.01 0.03 0.05 0.07 
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 MAE [-] rRMSE [-] 

Locations 10-min 20-min 30-min 10 min 20 min 30 min 

39 0.01 0.01 0.01 0.04 0.06 0.07 

40 0.01 0.02 0.02 0.09 0.10 0.12 

41 0.01 0.02 0.02 0.06 0.13 0.15 

42 0.01 0.02 0.02 0.07 0.11 0.13 

43 0.03 0.04 0.05 0.05 0.06 0.08 

44 0.01 0.02 0.02 0.07 0.11 0.12 

45 NaN NaN NaN NaN NaN NaN 

46 0.01 0.02 0.02 0.07 0.13 0.16 

47 0.02 0.03 0.03 0.05 0.07 0.08 

48 0.01 0.01 0.02 0.03 0.04 0.06 

49 0.01 0.02 0.02 0.03 0.05 0.06 

50 0.02 0.03 0.03 0.05 0.08 0.10 

51 0.01 0.01 0.02 0.05 0.07 0.09 

52 0.01 0.01 0.02 0.04 0.07 0.10 

53 0.01 0.02 0.02 0.08 0.08 0.09 

54 0.01 0.02 0.02 0.04 0.06 0.08 

55 NaN NaN NaN NaN NaN NaN 

56 0.01 0.02 0.02 0.06 0.08 0.10 

57 0.01 0.02 0.02 0.05 0.08 0.11 

58 0.01 0.02 0.03 0.06 0.09 0.11 

59 0.01 0.02 0.02 0.05 0.08 0.11 

60 0.01 0.02 0.02 0.12 0.13 0.11 

61 0.01 0.02 0.02 0.03 0.05 0.07 

62 0.04 0.05 0.06 0.16 0.24 0.19 

63 0.01 0.02 0.02 0.05 0.12 0.16 

64 0.00 0.01 0.01 0.03 0.04 0.06 

65 0.01 0.02 0.02 0.06 0.10 0.12 

66 0.05 0.12 0.15 0.09 0.14 0.16 

67 0.04 0.05 0.06 0.07 0.14 0.15 

68 0.04 0.06 0.07 0.07 0.10 0.12 
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Table A-2: Day-ahead net load forecasting results for all 68 feeders, net load data is not available for location 

17, 45, and 55. 

 MAE [-] rRMSE [-] 

Location 1 day 2 day 3 day 4 day 1 day 2 day 3 day 4 day 

1 0.11  0.15  0.16  0.17  0.18  0.24  0.27  0.27  

2 0.12  0.14  0.15  0.15  0.24  0.32  0.35  0.39  

3 0.08  0.11  0.13  0.13  0.28  0.40  0.47  0.49  

4 0.08  0.11  0.12  0.13  0.28  0.40  0.46  0.49  

5 0.17  0.21  0.23  0.22  0.34  0.43  0.46  0.46  

6 0.09  0.11  0.13  0.14  0.37  0.41  0.43  0.47  

7 0.09  0.10  0.10  0.11  0.38  0.40  0.43  0.47  

8 0.09  0.11  0.13  0.14  0.44  0.56  0.61  0.63  

9 0.07  0.09  0.10  0.10  0.25  0.31  0.33  0.34  

10 0.08  0.12  0.13  0.14  0.40  0.53  0.60  0.63  

11 0.06  0.08  0.09  0.09  0.31  0.42  0.46  0.47  

12 0.05  0.07  0.08  0.08  0.29  0.40  0.44  0.45  

13 0.06  0.08  0.09  0.09  0.16  0.19  0.21  0.22  

14 0.04  0.05  0.06  0.06  0.12  0.15  0.17  0.17  

15 0.04  0.06  0.07  0.07  0.20  0.28  0.32  0.33  

16 0.04  0.06  0.07  0.07  0.21  0.29  0.33  0.34  

17 NaN NaN NaN NaN NaN NaN NaN NaN 

18 0.08  0.10  0.11  0.11  0.38  0.45  0.50  0.51  

19 0.08  0.10  0.11  0.11  0.38  0.45  0.50  0.52  

20 0.12  0.14  0.15  0.15  0.36  0.44  0.46  0.46  

21 0.20  0.23  0.26  0.27  0.37  0.41  0.47  0.47  

22 0.21  0.25  0.27  0.28  0.38  0.43  0.47  0.48  

23 0.04  0.05  0.06  0.06  0.14  0.19  0.21  0.21  

24 0.06  0.08  0.08  0.08  0.31  0.37  0.39  0.41  

25 0.09  0.11  0.13  0.14  0.36  0.42  0.44  0.43  

26 0.07  0.09  0.09  0.09  0.38  0.45  0.48  0.51  

27 0.07  0.09  0.10  0.10  0.25  0.31  0.33  0.34  

28 0.07  0.09  0.09  0.09  0.35  0.41  0.44  0.45  

29 0.07  0.08  0.09  0.10  0.37  0.42  0.47  0.49  

30 0.04  0.06  0.06  0.06  0.18  0.24  0.27  0.27  

31 0.04  0.06  0.06  0.07  0.18  0.24  0.27  0.28  

32 0.09  0.12  0.13  0.13  0.42  0.51  0.57  0.61  

33 0.09  0.11  0.13  0.14  0.42  0.50  0.57  0.60  

34 0.11  0.12  0.13  0.14  0.25  0.31  0.33  0.34  

35 0.09  0.11  0.13  0.14  0.45  0.54  0.62  0.67  

36 0.06  0.07  0.08  0.08  0.32  0.39  0.42  0.43  

37 0.06  0.07  0.08  0.08  0.30  0.37  0.40  0.41  

38 0.06  0.07  0.08  0.08  0.30  0.37  0.41  0.41  

39 0.06  0.07  0.08  0.08  0.30  0.36  0.40  0.41  
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 MAE [-] rRMSE [-] 

Location 1 day 2 day 3 day 4 day 1 day 2 day 3 day 4 day 

40 0.04  0.06  0.07  0.07  0.25  0.33  0.36  0.35  

41 0.05  0.07  0.07  0.07  0.29  0.37  0.41  0.40  

42 0.06  0.07  0.08  0.07  0.33  0.40  0.43  0.41  

43 0.09  0.13  0.14  0.15  0.15  0.21  0.24  0.25  

44 0.12  0.14  0.15  0.15  0.24  0.27  0.28  0.28  

45 NaN NaN NaN NaN NaN NaN NaN NaN 

46 0.07  0.09  0.11  0.12  0.34  0.46  0.51  0.51  

47 0.05  0.07  0.07  0.08  0.13  0.17  0.19  0.20  

48 0.05  0.07  0.07  0.08  0.15  0.21  0.24  0.25  

49 0.06  0.09  0.09  0.09  0.18  0.25  0.27  0.27  

50 0.10  0.13  0.14  0.14  0.29  0.36  0.39  0.40  

51 0.07  0.09  0.10  0.10  0.32  0.44  0.48  0.49  

52 0.07  0.10  0.11  0.11  0.34  0.46  0.51  0.51  

53 0.09  0.12  0.12  0.12  0.38  0.47  0.50  0.51  

54 0.09  0.12  0.12  0.12  0.36  0.47  0.50  0.51  

55 NaN NaN NaN NaN NaN NaN NaN NaN 

56 0.07  0.10  0.11  0.11  0.36  0.49  0.56  0.59  

57 0.07  0.09  0.10  0.10  0.37  0.49  0.56  0.59  

58 0.08  0.10  0.11  0.12  0.35  0.46  0.54  0.57  

59 0.08  0.10  0.12  0.12  0.36  0.47  0.54  0.57  

60 0.07  0.09  0.11  0.11  0.30  0.41  0.46  0.48  

61 0.06  0.09  0.10  0.11  0.28  0.40  0.46  0.48  

62 0.05  0.07  0.08  0.08  0.30  0.36  0.40  0.39  

63 0.07  0.10  0.11  0.11  0.35  0.43  0.48  0.47  

64 0.05  0.06  0.07  0.07  0.26  0.33  0.36  0.36  

65 0.06  0.07  0.08  0.08  0.31  0.36  0.39  0.40  

66 0.10  0.13  0.14  0.14  0.37  0.46  0.50  0.50  

67 0.12  0.14  0.15  0.15  0.36  0.45  0.50  0.50  

68 0.11  0.14  0.16  0.17  0.17  0.22  0.25  0.26  
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